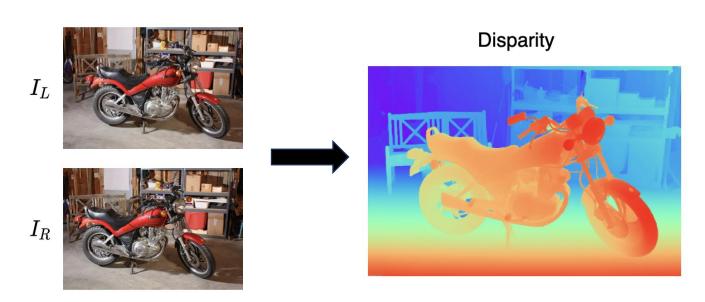
Infinigen for Zero-shot Stereo Matching

David Yan



Jia Deng

Stereo Depth Estimation Recap

Classic task

- Recover dense 3D from a rectified stereo image pair
- Equivalent to pixel correspondence (disparity)
- Classic recipe
 - Deep neural networks
 - Labeled data

Robust stereo remains challenging

- We still train models for each benchmark
 - Including the benchmark train set!
- Zero-shot transfer is a better proxy for in-the-wild performance

Failure case of cross-dataset transfer from KITTI to Middlebury

Why study data for zero-shot stereo?

A lesson from mono-depth (MiDaS):

• A well-curated dataset is key to robust performance

A typical stereo network will be trained on

- >600k synthetic stereo pairs
- < 3k real-world stereo pairs

Let's take a hard look at our synthetic datasets!

Synthetic data has a massive design space

High-level Design Choices:

- Random object placement
- Artist-designed scenes
- Domain-specific simulators

Low Level Design Choices:

- How many floating objects?
- What materials?
- What lighting?
- ...

FlyingThings3D (Sceneflow)

TartanAir

VirtualKITTI

Dataset design is not well understood

Lots of new datasets in the last ~10 years... But almost no ablation studies on dataset design!

What makes a good synthetic stereo dataset?

Dataset Ablation

- 1. Render small datasets using different Infinigen settings
- 2. Train stereo networks and examine zero-shot performance

We discover better arrangements

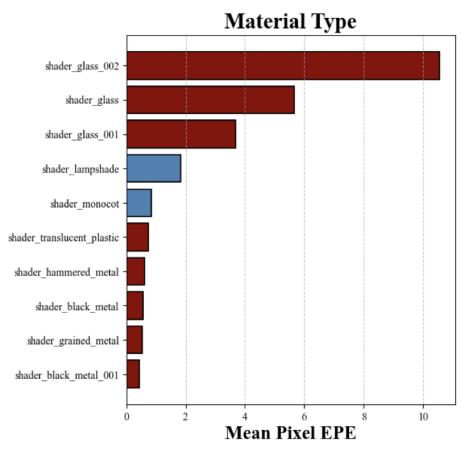
Combine floating objects with realistic scenes!

• More effective than realistic scenes or floating objects alone

We discover better arrangements

Hypothesis:

- Flying objects are extremely sample efficient, but have large domain gap
- Realistic scenes reduce domain gap, but are sample inefficient
- Combining the two gets the best of both worlds



Current dataset designs can hurt performance

Training on very reflective and transparent objects hurts performance on diffuse regions

Hypothesis:

- Most models have insufficient inductive bias for these ill-posed surfaces
- Recent work on mono-depth integration might help mitigate this trade-off

Novel Dataset

Construct full-scale (~150k) dataset

- Use parameters found in ablation study
- Performance optimizations to make generation cost tractable

Dense Floating Objects

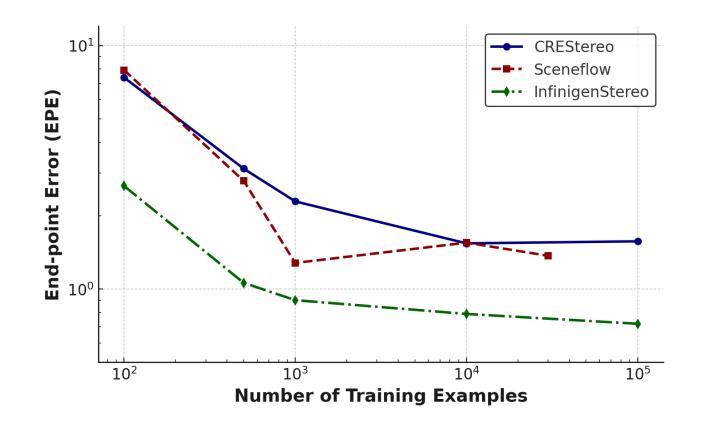
Nature

Indoor Floating Objects

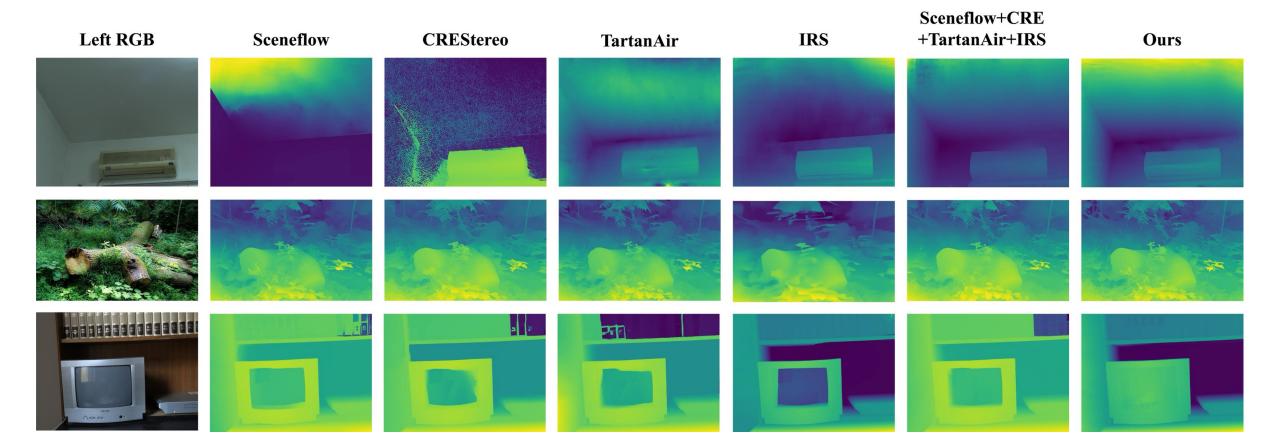
Zero-shot Benchmark Performance

Our data beats a combined suite of existing synthetic datasets

• Mixed Sceneflow+CREStereo+TartanAir+IRS (~640k)


• Ours (~150k)

Method	Middlebury 2014				Middlebury 2021		ETH3D		KITTI				Booster (Q)	
	Н		F		-		-		2012		2015		-	
	2px	EPE	2px	EPE	2px	EPE	1px	EPE	3px	EPE	3px	EPE	2px	EPE
RAFT-Mixed	5.50	0.75	10.4	3.09	8.97	1.34	2.58	0.26	3.64	0.80	4.95	1.04	11.46	3.18
RAFT-Infinigen	4.48	0.62	9.4	2.16	8.17	1.26	2.93	0.26	3.25	0.75	4.25	0.98	9.17	2.05
DLNR-Mixed	5.21	0.76	9.31	2.15	9.30	1.36	2.50 2.63	0.25	3.68	0.87	4.95	1.08	12.17	2.75
DLNR-Infinigen	3.85	0.76	6.16	2.06	7.23	1.08		0.23	3.33	0.77	4.60	1.01	8.75	1.83
Selective-IGEV-Mixed	5.24	0.85	9.11	3.98	8.24	1.57	2.37	0.31	3.97	0.86	5.31	1.12	11.00	3.04
Selective-IGEV-Infinigen	3.61	0.72	6.00	1.98	7.62	1.22	2.47	0.24	3.26	0.77	4.55	1.03	8.84	2.01


Scaling Results

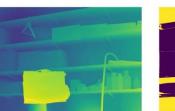
Our data scales better when controlling for dataset size

• 500 Infinigen > 100,000 CREStereo

Qualitative Results

Qualitative Results

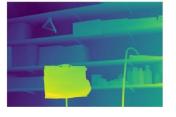
Left RGB


>2px error

EPE

DLNR-Mixed

Ours



DLNR-Mixed

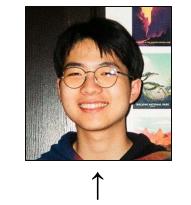
Ours

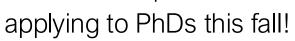
What have we learned?

- Careful study of data can lead to important insights
- It is worth our time to ablate dataset design like we do for model design
- Controllable synthetic data enables us to perform such studies
 - Our stereo-tuned Infinigen checkpoint is open-source
 - We hope others will build on our work!

Infinigen as a tool to study data

- Controllability
 - Easy ablation setup
- Fine-grained error analysis
 - Material and Object Segmentation Maps
- Scalable Realism
 - Over 1800 unique background scenes
- Open-source generation code
 - Purchasing artist 3D scenes typically does not give redistribution license


Procedural Dataset Generation for Zero-Shot Stereo Matching


David Yan Princeton University

yan.david@princeton.edu

Alexander Raistrick Princeton University araistrick@princeton.edu

Jia Deng Princeton University jiadeng@princeton.edu

